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Abstract

This master thesis work focuses on automatic defect identification and
segmentation by a combination of signal processing and deep learning algorithms
in infrared thermography (IRT). IRT is a type of Non-destructive evaluation
technique that involves identifying structural damage in an object of interest
without applying any permanent damage and modification. The data used
were thermal images recorded by the infrared camera are 2D non-stationary
signals. First, data pre-processing is applied to identify and detect defects to
clean the images. We briefly introduce and discuss the decomposition of signal
methods; then, for this thesis Fast Iterative Filtering (FIF), a decomposition
method, is used as the pre-processing algorithm due to its ability to handle
non-stationary signals. Then, a deep learning method is applied to detect
the defect. Deep learning has made remarkable progress in image processing
applications in recent years. Due to insufficient training data, deep learning
algorithms remain mainly unexplored in this research direction, and only a few
publications involve their application to IRT. We introduce the Deep learning
algorithm Mask Region Based Convolutional Neural Networks (RCNN) and
how it is coupled with IRT to identify and classify the defect.
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CHAPTER 1

Introduction

1.1 Overview

In this chapter, we introduce the thesis background and focus area. We
highlighted the motivations, scope, and thesis organization. We will explore the
Non-destructive evaluation (NDE) method in defect detection. Infrared cameras
were used for data acquisition of thermal images which can be reordered as
nonstationary 2D signals.

Signal Processing techniques are described and justified for pre-processing
thermal images to remove noise recorded by the infrared camera. In this thesis,
Fast Iterative Filtering (FIF) is applied in the pre-processing of thermal images.

A deep Learning approach is proposed in automatically recognizing pixel-
level defects and creating bounding boxes around the thermal images. Mask
RCNN is used thanks to its ability in segmenting the defects. Artificial neural
network theory is briefly explained, and Mask RCNN architecture is described
and applied.

1.2 Importance of Non-Destructive Evaluation

Non-destructive Evaluation (NDE) [3] is a group of techniques used to analyze
and evaluate a material property without causing damage. NDE methods rely
upon electromagnetic radiation, sound and other signal conversions to examine
a wide variety of objects [5]. Infrared Thermography (IRT) is one of many NDE
techniques used to “see the unseen”.

Inspecting materials and products using IRT have been widely applied to
evaluate subsurface defects, hidden structures, etc. IRT is based on imaging
an object using an infrared camera by sensing the infrared (thermal) radiation
emitted by the object for the quality control of materials such as metals
and composites. Due to thermal wave propagation and attenuation, each
heterogeneous thermal element perturbs the thermal wave propagation on the
object surface compared to the surrounding area of study.

The infrared camera records this thermal perturbation, and the results can
be analyzed to obtain further information. This approach has some advantages,
such as low cost since no contact and damage of the object is performed. In
addition, safety is an advantage since some objects, such as hot or toxic materials
are not in contact with the inspector, and some objects can be out of reach
to contact. Also, some objects, such as historical paintings, can be delicate to
touch; thus, avoiding damage is a priority.
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1.3. Pre-processing techniques

The main objective of the IRT technique in this thesis is to detect and
classify the Regions of Interest (ROIs) that could be represented as an anomaly
or a defect by analyzing the sequence of images.

1.3 Pre-processing techniques

Pre-processing is generally used to correct some parts of thermal images affected
by, for example, dead pixels and vignetting. Pre-processing methods improve
defect visibility during data processing in infrared thermography by cleaning
the thermal images [29]. These methods include Empirical Mode Decomposition
(EMD), Discrete Wavelet Transform (DWT), and Iterative filtering (IF).

In 1998 [42], Huang and his research group at NASA devised the so-called
EMD algorithm to handle nonstationary signals by decomposing the signal into
simple components which contain a unique instantaneous frequency at each
instant of time. The relevant components based on the focus of the study were
identified and combined to form the clean signal. A few years later, Huang
and his group devised the so-called Ensemble Empirical Mode Decomposition
(EEMD) algorithm, which allowed them to overcome the instability of the
original EMD algorithm.

The success of the two algorithms inspired researchers to work on alternative
methods for decomposing a signal into a few simple and meaningful components.
One of them, called the IF method, and its faster alternative, the Fast Iterative
Filtering (FIF) algorithm, are based on iterations like EMD and EEMD, that
is, no assumptions are required on the kind of signal we want to decompose. In
this thesis, we adopted the 2D FIF as our pre-processing tool for the 2D thermal
images to improve performance when applying post-processing approaches.

1.4 Deep learning technique

Traditionally, regular pattern-based unsupervised data processing has been used
for quite a long time. It led researchers to seek innovative methods to enhance
defects’ visibility further and analyze the defect characterization in industrial
applications, which are still crucial issues in thermographic NDE literature [33].
Regular human inspection of structures, machines, and materials can easily
be hampered by fatigue and human judgment error. Therefore, an automated
inspection system would be ideal since it is compatible with high inspection
rates to avoid human inspector fatigue, to meet accuracy and quality demands
for quantitative analysis, and maintenance costs are highly recommended in
the NDE of IRT.

This study proposes deep learning algorithms to achieve automatic defect
detection and precise localization (subsurface defects case) from different thermal
image sequences. Since the beginning of the twenty-first century, the deep
learning [47] (deep neural network)-one of the fields of artificial intelligence, has
made substantial progress. Deep learning neural networks have shown their
capability to outperform most of the other approaches existing previously in
a significant number of applications. It has contributed to making them very
popular in diverse scientific communities.

However, one must consider the computational expense caused by multilayers
of deep learning. The requirement for training datasets to be labeled and used
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1.5. Literature review

in the network remains unexplored in NDE projects. Few works in the literature
deal with defect detection in passive infrared thermography coupling with deep
learning algorithms due to training complexity and training data limitation.
As a result, innovative approaches need to be developed to further improve the
feasibility of deep Learning models with infrared thermography.

Compared to the typical neural network, deep learning is making huge strides
in solving problems that were difficult to handle in the artificial intelligence
research fields for many years. As a result, it has been applied to different
research fields. For example, computer vision has surpassed other learning
techniques in predicting and analyzing the activity based on scientific data,
especially in image classification and image recognition.

This thesis introduces the object segmentation method for defect segmenta-
tion and identification of each object at the pixel level , and, in particular, the
deep learning algorithm Mask RCNN is presented. Mask RCNN is a conceptually
flexible, simple, and general framework for object instance segmentation.

As we will see, detailed and enough parameters to train data in the data
trained model can lead to better performance for the trained results. However,
collecting a considerable amount of data is computationally expensive in training.
Therefore, in this thesis, we collected a small amount of thermal data due to
the constraints caused by difficulty in getting the license, the long time required
to collect the data, and the limitation of camera storage capacity. Due to small
data, transfer learning will be applied to train the deep spatial characteristic
models to identify or segment defects in this research.

We use deep neuron networks to extract more valuable data to train a
learning system using artificial intelligence learning methods. The research on
infrared thermography for defect detection using deep learning algorithms is a
relatively new topic in the field of NDE.

For this project, we propose to design an advanced deep learning algorithm to
extract more information from IRT for NDE to achieve infrared defects visibility
enhancement and automatic defect detection and segmentation. Furthermore,
the proposed method allows to improve the detection of more profound
subsurface defects for limited IRT signals.

1.5 Literature review

In [17] deep learning approaches were proposed on infrared thermography
inspection, intended to identify defects efficiently and accurately automatically.
Deep learning algorithms were applied to achieve automatic defect detection
and precise localization (subsurface defects case) from different thermal image
sequences. The algorithms applied included Mask-RCNN, Yolo-v3 and Res-unet.
Mask RCNN was applied for instance segmentation, Res-u-net was applied for
semantic segmentation, and YOLO-V3 was applied for object detection. Their
performance was evaluated and compared. These mentioned methods showed
remarkable efficacy in improving defect visibility during NDE. The proposed
methods achieved effectively the defect identification and segmentation with
limited data.

Work devoted to the fast iterative filtering performance in pre-processing
thermographic data was presented in [29]. FIF2 algorithm brief theory was
studied, and its performance as a pre-processing tool was done. FIF2 was
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1.6. Summary of the work

introduced, discussed, and compared to previously developed techniques.
Pre-processed data were further analyzed during the post-processing step,
demonstrating the reliability of FIF2 in enhancing thermal imprints, which
leads to improved detection of subsurface features. In particular, enhanced
thermal imprints highlight the shape of the grid of glass fibres present beneath
an external coating of hemp fibres (and, in general, added to the whole specimen
along the x-y vectors). Finally, a validation among numerical and experimental
(thermographic) data is provided thanks to the Parker method.

In [19] infrared thermography is used for NDE of fibre reinforced polymer
(FRP) rehabilitated structures. Infrared thermography presented a potentially
efficient non-contact, real-time inspection and data interpretation technique.
The technique was reviewed while assessing the variations thereof. Also, critical
assessment of challenges must be overcome before the method can be routinely
used to inspect externally bonded FRP composites.

In [12] multidimensional iterative filtering decomposition was applied to
detect Hyperspectral chemicals. Chemical plumes from natural or anthropogenic
atmospheric emissions can be unexpected and toxic. The detection and
classification of such plumes in an efficient way would reduce the risk of harmful
exposures. IRT was used as the pre-processing algorithm for a hyperspectral
dataset before classification. It allowed the hypercubes to be decorrelated and
mean-centred, thus, proving to be an equivalent procedure to the mean-centring
and whitening of the data.

In [44] deep learning is applied for automatic defect detection and
segmentation of tunnel surface using modified Mask RCNN. Safety of tunnel,
periodic inspection to detect surface defects. Traditionally it relies on using
"naked eyes" inspection. However, these methods with manual feature extraction
do not perform well in detecting tunnel defects due to the complicated
background of tunnel surfaces. The work proposes a deep learning algorithm
called Mask RCNN to address this problem and improve object detection
accuracy.

Lastly, in work titled “deep learning for infrared thermal image-based
machine health monitoring” [22], deep learning was applied to automatically
identify the condition of a machine by creating and classifying features that
summarize the characteristics of measured signals. Deep learning was applied to
the infrared thermal video to determine the machine’s condition automatically.
The requirements to be detected were oil level prediction and machine fault
detection. The system could detect the conditions very accurately (i.e. 91.67%
and 95% accuracy of the individual use cases). The proposed approach
can detect many conditions in rotating machinery very accurately without
requiring any detailed knowledge about the underlying physics, thus having
the potential to simplify condition monitoring using complex sensor data
significantly. Furthermore, essential regions in the infrared thermal images
can be identified related to specific conditions, potentially leading to new
physical insights.

1.6 Summary of the work

The thesis continues as follows; in the following chapter, we review signal
decomposition methods for signal pre-processing applications. In particular,
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1.6. Summary of the work

EMD and FIF approaches are defined and compared, and characteristics and
examples are demonstrated. Chapter 3 is dedicated to Machine Learning,
focusing on the deep learning branch and their possible application to IRT.
The fourth chapter reviews the numerical applications of the Fast Iterative
Filtering method and Mask RCNN algorithm. In Chapter 5, we make some
recommendations and arrive at conclusions of the present work.
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PART I

The First Part
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CHAPTER 2

Signal Decomposition

Nonstationary signals, which are signals whose frequency and amplitude are not
constant, are prevalent in the real world. Their solution provides exceptional
discoveries in many fields of research[18]. Consider, for instance, the atmospheric
temperature of the globe recorded for instance daily temperature for several
years. In economics, the record of inflation rate for some time. In Medicine,
biological signals reflect the presence signifies the ionic and electrical activities
of the muscular and the neural cells in a synchronized manner[24]. In geophysics,
analyzing signal anomalies in Schumann Resonances that occur days before a
major seismic wave[26]. In computer vision, with application to signal image
video process and multi-scale image fusion[1]. Several signal processing methods
have been proposed, such as Short Time Fourier Transform (STFT), Wavelet
Transform (WT), and derived methods[9]. STFT assumes stationarity within a
short time interval for a given window. Thus, the performance is poor for a
signal with abundant fast-changing frequencies common in nature. However,
the wavelet transform is updated also essentially a window tunable Fourier
transform that did not get rid of the limitations of the Fourier transform and
the wavelet basis is difficult to select, which lacks adaptability[18]. Furthermore,
both processes have predetermined bases making them not suitable for data-
driven analysis. Thus, there is a need for methods that are more accurate in
the time-frequency representation.

2.1 Empirical Mode Decomposition

In 1998, Huang and his research group at NASA developed the Empirical
Mode Decomposition (EMD) algorithm[18] [30]. This addresses the question
of decomposing non-stationary signal into simpler components without prior
knowledge of the basis. The components are named the Intrinsic Mode
Functions(IMFs). IMF is a function where the number of extrema and zero
crossings must either be equal or differ by only one and the mean value of the
envelope defined by the local maxima and minima is zero[4][35].

The IMF has to be extracted properly from signal in order to keep its
properties and physical meaning of signal unaltered. Significant analysis is done
using the IMFs as they bring the meaningfulness of the signal[35]. The key
process behind this technique is the sifting process that extracts the highest
oscillations of a signal f by subtracting its moving average M(f) from the
signal[43].

7



2.2. Iterative Filtering

Let M be the operator that captures the moving average of the signal f ,
and let:

f1 = S1,1(f)(t) = f(t) − M(f)(t) (2.1)

where f1 be the fluctuating part. Iterating leads to compute:

fn = S1,n−1(fn−1)(t) = fn−1 − M(fn−1)(t) (2.2)

The first IMF denoted by IMF1(t) is given by

IMF1 = lim
n→∞

S1,n(f) (2.3)

where S subscripts 1 and n denote the first IMF and n − th iteration
respectively[30]. When the limit is achieved the moving average of IMF1 is the
zero function. For m ≥ 1 IMFs have been determined, the the residual is given
by:

r(t) = f(t) −
m∑

j=1
IMFj(t) (2.4)

The iteration stops when r becomes a trend signal, that is, with atmost one
local maxima or minima. Rearranging the equation, the signal data set is
decomposed as,

f(t) =
m∑

j=1
IMFj(t) + r(t) (2.5)

The moving average is the mean of two envelops, upper and lower, that are
cubic spines connecting local maxima and local minima.

Upon further study the EMD was found to be sensitive to small pertubations.
Thus small pertubation especially white noise lead to completely different
decomposition. To overcome this Huang, introduced the Ensembled Empirical
Mode Decomposition (EEMD)[25]. It involved adding of white noises realization
then several decompositions computed as the mean of many different trials
produced using the (EMD). Thus achieving robustness. Several alternative
methods have been derived. Among them, the only one based on iterations is
the Iterative Filtering (IF).

2.2 Iterative Filtering

Lin et al in 2009, proposed an alternative method called Iterative Filtering[9].
This method addresses the issues related to EMD such as stability and
convergence of sifting process. This technique has the same structure of the
EMD. The difference is, it replaces the moving average with convolution of the
given signal with filters, for instance, a double average filter.

Definition 2.2.1. A function ω : [−k, k] → R is a filter if it is nonnegative,
bounded, even, continuous, and

∫
R ω(t) dt = 1[10]. Also, a double convolution

filter ω is the self-convolution of a filter ϖ, that is ω = ϖ ∗ ϖ. The size of the
filter is half of its support: filter length of

ω = 1
2m{t : ω(t) > 0}.

8



2.2. Iterative Filtering

The filter function is used for signal denoising. Filter methods are able to
handle texture, edges, and high frequency signals all at once. When applied to
images, these methods are able to separate the majority of the signal from the
noise[3]. This is achieved by convolution of the signal weighted using a filter
wn with non-zero values concentrated on a finite interval [−k, k][9]:

M(fn)(x) =
∫ k

−k

fn(x + t)wn(t) dx (2.6)

where kn is the filter length. Define f1 = f to capture the flactuation fn,
through the operator:

fn+1 = fn − Mn(fn) (2.7)

where the subscript is the number of IMFs. The IF stops when the reminder
r is a trend. Hence, the signal is decomposed as in the EMD[43]. There are
two loops, an inner loop and an outer loop in the iterative filtering algorithm.
The inner loop is to compute and capture a single IMF and the outer loop is
to derive all the IMFs of the original signal. Combined with the Fast Fourier
Transform(FFT), it formed an algorithm called Fast Iterative Filtering (FIF).

Algorithm 1 Iterative Filtering IMF = IF (f)
1: IMF = {}
2: while the number of extrema of f ≥ 2 do
3: f1 = f
4: while the stopping criterion is not satisfied do
5: Compute filter length lm for fm(x)
6: fm+1(x) = fm(x) −

∫ km

−km
fm(x + t)wm(t)dt

7: m = m + 1
8: end while
9: IMF = IMF ∪ {fm}

10: f = f − fm

11: end while
12: IMF = IMF ∪ {f}

The length kn can be computed as follow

kn = 2
[
v

N

z

]
(2.8)

where v is set as 1.6. N is the total number sample parts of original signal. z is
the number of its extreme points.

Theorem 2.2.2 (Convergence of the Iterative Filtering method[14]). Given the
filter function w(t), t ∈ [−k, k], be L2, symmetric, nonnegative,

∫ k

−k
w(t)dt = 1,

and let f(x) ∈ L2. If ŵ(t) = 0 or |1 − ŵ(t)| < 1, where ŵ(t) os the Fourier
transform of w(t) computed at frequency ξ, Then Mn(f)(x) converges and;

IMF1 = lim
n→∞

Mn(f)(x) =
∫ ∞

−∞
f̂(x)χŵ(ξ)=0e2πξx dξ (2.9)

9



2.3. Numerical Examples

Thus the method converges for sure to the limit function (2.9) which depends
only on the shape of the filter function chosen and the support length selected
by the method (2.8). The theorem provides sufficient conditions on the filter
that guarantee the convergence of the inner loop[11]. The sufficient conditions
are not unrealistic.

For example, let the double average filter a(t) that satisfies the sufficient
conditions be given by

a(t) = k + 1 − |t|
(k + 1)2 , t ∈ [−k, k]

where F(a)(ξ) = 0 when ξ = l
k+1 , 1 ≤ l ≤ k + 1. In most cases, it is easy to

obtain filters with the property F(ω)(ξ) = 0 or |1 − F(ω)(ξ)| < 1. Thus, it is
known that for nonnegative and symmetric filters ω, F(ω)(ξ) is real and

F(ω)(ξ) =
∫ ∞

−∞
ω(t)cos(−2πitξ) dt

Since
∫
R ω(t) dt = 1, the we have

|F(ω)(ξ)| =
∣∣∣∣∫ ∞

−∞
w(t) cos(−2πitξ)dt

∣∣∣∣ ≤
∫ ∞

−∞
|w(t) cos(−2πitξ)| dt

<

∫ ∞

−∞
|w(t)| dt =

∫ k

−k

w(t)dt = 1
(2.10)

Hence for a nonnegative and symmetric filters ω, t ∈ [−k, k], −1 <
F(ω)(ξ) < 1, for every ξ ∈ R. For 0 ≤ F(ω)(ξ) < 1, for all ξ ∈ R, consider filter
v(t), t ∈ [−2k, 2k] given by the convolution of the filter ω, t ∈ [−k, k], with
itself. Given by

v(t) = ω(t) ∗ ω(t).

The Fourier transform of v(t) is given by F(v)(ξ) = F(ω)(ξ) ∗ F(ω)(ξ)
satisfying the condition 0 ≤ F(v)(ξ) < 1, for all ξ ∈ R. Thus, every filter
defined by the convolution of a nonnegative, symmetric, and finitely supported
L2 filter with itself satisfies the sufficient conditions of Theorem 2.2.2.

2.3 Numerical Examples

Example 1

Figure 2.1 is a signal to be decomposed by the Iterative filtering algorithm. IF
produces decomposition plotted in figure 2.2, where we report an IMF and the
trend compared to the ground truth. The signal is composed by adding two
functions:

y1 = (2(t − 0.5)2 + 0.2)sin(20πt + 0.2cos(40πt)) (2.11)

y2 = 5(t − 0.5)2 (2.12)

10



2.3. Numerical Examples

Figure 2.1: Artificial Signal generated

Figure 2.2: Decomposition of non-stationary signal using IF algorithm

In Figure 2.2 the red curves represent the original components (ground truth)
of the signal, whereas the black curves represent the intrinsic mode functions
(IMFs) computed by the IF algorithm. From Figure 2.2, there are evident errors
nearby the boundaries when decomposing the signal by IF algorithm. Boundary
conditions influence the decomposition of a signal to an extent that increases
with the component scale. The boundary was pre-extended periodically and
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2.3. Numerical Examples

anti-symmetrically a method assumed to be optimal [30]. Extensions should
be properly handled, for robust decomposition of the original signal. However,
based on Figure 2.2, the pre-extension is not optimal since near the boundary
where the frequency and amplitude change rapidly, the error increases. Thus,
the amplitude and frequency rate of change affects the performance of the
extension. The identification of an optimal extension is an open problem in the
field for general signals. This problem is out of the scope of this work. From
now on we assume that an optimal way of solving the problem can be identified
case by case, and we leave the problem to future research.

Example 2

Here the IF is applied to Tsunami data recorded at Kawaihae, Hawaii, 4308hours
from March 11, 2011 to September 13, 2011.The data is decomposed into several
components as shown in Figure 2.4 where the first five IMFs represent the
transient signals associated with the impact of the tsunami. The last three
components instead reveal the basic wave height with its ’regular’ patterns.
The regularity of the patterns is not ideal due to several factors such as the
pre-extension of the boundary and noise which arise from the error of the sensors
[25].

Figure 2.3: Tsunami Signal

Figure 2.4 is a plot of the decomposed Tsunami signal. From the graph,
the black signal is the decomposed signal with extended boundary, to make it
periodic. While the red signal the boundary is not extended, the end effects
are present. The decomposed signal had seven IMFs and a trend, where the
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Figure 2.4: Decomposition of Tsunami signal using IF algorithm

first two IMFs represent the transient signals associated with the impact of the
tsunami. The last four components instead reveal the basic wave height with
its regular patterns with periods of approximately 12, 24, 36 and 72 hours. [11]

2.4 Multidimensional Iterative Filtering Method

Iterative Filtering can be extended to Higher dimensions in what is called
Multidimensional iterative filtering (MIF) [13]. This involves the extension of
IF code and its filter to higher dimensions. The MIF consists of two nested
loops. The inner loop computes an IMF of an n-dimensional signals as the limit
of a sequence generated taking the moving average and subtract it iteratively
from the sequence [13]. The stopping criterion discontinues the iteration when
it nears zero function. The outer loop updates the signal by subtracting from it
the previously computed IMFs. The outer loop is iterated until the remainder
is n-dimensional trend signal [9].
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Algorithm 2 Multi-dimensional Iterative Filtering Algorithm IMF = MIF (f)
1: IMFs = {}
2: while the average number of extrema of f ≤ Ne do
3: compute the filter support Ω for f
4: f1 = f
5: while fn+1(x) = fn −

∫
Ω fn(x + t)w(t)dkt do

6: fn+1(x) = fn(x) −
∫

Ω fn(x + t)w(t)dkt
7: n = n + 1
8: end while
9: IMF = IMFs ∪ {fn}

10: f = f − fn

11: end while
12: IMF = IMFs ∪ {fn}

The pseudo-code of MIF is provided in Algorithm 2, where f is k-dimensional
signal to be decomposed, ω ∈ Rn is a filter function with finite support Ω ⊂ Rn,
Ne ∈ N is the number of local extrema allowed in the trend, usually set to two
[13]. The condition for the filter ω are∫

ω

w(t) dkx = 1 (2.13)

where ω is nonnegative L2 function, finitely supported on ω ⊂ Rn. This
implication does not mean all ω that satisfy the above property guarantee
convergence of this technique. Thus careful chosen class of w should be applied.

In the one dimension IF algorithm, one dimension Fokker-Planck (FP) filters
were applied as the weight function since they have the property of being
infinitely smooth on the entire real line. The only drawback of such filters is
that they are not known in an explicit form. However it is possible to compute
them up to machine precision using numerical methods. Since it is infinitely
differentiable, anywhere in the domain, they can be extended to k-dimension [37].
A 2D signal, applying 2D Fokker-plank partial differential equation. However
the technique is computational expensive. Thus, as an alternative approach the
tensor product can be considered. This method has the disadvantage that it
does not ensure symmetry in the ordering where filters are applied in different
directions.

A better approach is to make use of scaling, rotation and resampling of the
one dimension filter to make the higher dimension version of it. For 2D, once
the chosen one dimension Fokker-Planck filter ω has been computed, it can
be extended to produce a numerical approximation W̃ of the continuous two
dimensional filter W, where the support Ω ⊂ R2, which is bounded, connected
and spherical set, is approximated by applying a lattice in R2. Consider a line
lh,k for each point (h, k) on the lattice connected to the origin. Then W is
approximated using values of ω̃ along the line lh,k. The process is repeated for
every point inside the support Ω. Thus, the new filter W̃ obtained and scaled
by its volume to ensure the property unit integral is stored. It follows that

1
VW̃

∫
Ω

W̃ (t) dkt = 1 (2.14)
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where VW̃ is the volume of the new filter. The filter is produced using the
previously proposed approach called Generalized Fokker-Planck (GFP) filter.

2.5 Convergence Result

Consider a 2 dimensional case, where the n-dimensional case follows from the
result[9]. Define the Fourier Transform of a filter ω ∈ R2 as

F (w)(θ, β) =
∫ ∞

−∞

∫ ∞

−∞
w(s, t)e−2πisθe−2πisβ ds dt, (θ, β) ∈ R2 (2.15)

Define the operator

L(f)(x, y) =
∫ ∞

−∞

∫ ∞

−∞
f((x, y) + (s, t))w(s, t) ds dt, (2.16)

for (θ, β) ∈ R2

since s(f) := f − L(f) = (1 − L)(f). Then, by linearity property of Fourier
Transform

F(Sn(t))(θ, β) = F((1 − L)nf)(θ, β) (2.17)
= [1 − F(w)(θ, β)]nF(f)(θ, β) (2.18)

Theorem 2.5.1 ([13]). Let w(s, t), (s, t) ∈ Ω be L2, nonnegative, axial
symmetric, satisfying ∫

Ω
w(s, t) ds dt = 1 (2.19)

and let f(x, y) ∈ L2(R2). If |1 − F(w)(θ, β)| ≤ 1 or F(w)(θ, β) = 0, Then
{Sn(f)}n≥1, converges and

lim
x→∞

Sn(f)(x, y) =
∫ ∞

−∞

∫ ∞

−∞
F(f)(θ, β)χ{F(w)(θ,β)=0}e2πθxe2πβy ds dt (2.20)

The proof is directly derived from the one dimensional case which can be
found in [11].

The mathematical analysis of the IF method above allows both to guarantee
its convergence and to accelerate the algorithm via the Fast Fourier Transform
producing the aforementioned Fast Iterative Filtering(FIF) technique.Which is
expanded to multi dimensions.

Fast Iterative Filtering

The properties of IF guarantee convergence, then accelerated via Fast Fourier
Transform (FFT) to produce a new improved technique called Fast Iterative
Filtering (FIF). The IF was extended to handle Multidimensional signals, thus,
FIF is also extended to deal with Multivariate signals, that are multi-channelling
and varying over space, but not over time [29].

In 2D Fast Iterative Filtering FIF2, the Pseudo code is provided in Algorithm
3, where f is the 2D signal, for example an image, to be decomposed, and
the FFT2 and iFFT2 represents 2D Fast Fourier Transform and inverse Fast
Fourier Transform respectively.
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Algorithm 3 Multi-dimensional Iterative Filtering Algorithm IMF = FIF2(s)
1: IMFs = {}
2: while the average number of extrema of f ≥ 2 do

compute the filter function w with support size L based on f
3: w̃ = FFT2(w)
4: Ik = FFT2(f)
5: while The stopping criterion is not satisfied do
6: Ik = (1 − w̃)Ik

7: end while
8: IMF = IMFs ∪ {iFFT2(Ik)}
9: f = f − Ik

10: end while
11: IMF = IMF ∪ {f}

This preprocessing method produces comparable results to the multi-
dimensional ensemble empirical mode decomposition (MEEMD) for image
preprocessing but at a faster rate [29]. MEEMD is an extension of the 1D
EEMD algorithm to a signal encompassing multiple dimensions [42]. The
experiment was done 2D images.

2.6 Numerical Examples

Example 1

Figure 2.5 (a) is a 2D Artificial signal to be decomposed by the Multidimensional
Iterative filtering algorithm. Figure 2.5 (b), is the cross section slice of the
diagonal. The signal is composed by adding three functions.

(a) (b)
Figure 2.5: The Initial artificial Image

Figures 2.6 (a), 2.7 (a), and 2.8 (a) are decomposed plots of the 2D artificial
signal. From the sections of the decomposed signal shown in figures 2.6 (b), 2.7
(b), and 2.8 (b), in black, we show the IMFs produced using the FIF2 algorithm.
At the same time, the red curves represent the ground truth.
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(a) (b)
Figure 2.6: IMF1

(a) (b)
Figure 2.7: IMF2

(a) (b)
Figure 2.8: Trend

Example 2

Real-life 2D thermal images of a composite material used for construction were
recorded for 120 seconds for heating and 380 seconds for cooling. The images
are to be subject to NDE on new composite material before being placed
on the market [29]. This analysis is done to understand the reactions (i.e.,
development of defects) at the interface between two subsequent layers.

FIF2 is applied in the preprocessing stage to enhance thermal imprints,
leading to improved subsurface features detection. FIF2 was applied due to
its ability to produce robust results, which is fast compared to MEEMD [29].
There were 500 images collected, one per each second of the recording. Figure
2.9(a) shows the thermal image at the 66th second. Figure 2.9(b) shows the
region of the thermal image to be preprocessed.
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(a)

(b)
Figure 2.9: Real life 2D Signal

Figure 2.10(a) represents signal of the 66th thermal image. The boundary
extension is applied asymmetrically, and then multidimensional FIF2 is used
to produce 20 IMFs and a trend. Based on the study, IMFs 9, 10 and 11 were
found to be significant for filtering as shown in Figure 2.11.

(a) (b)
Figure 2.10: Real life 2D Signal
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(a) (b) (c)
Figure 2.11: IMFs of the real signal

Summing them gives the Figure 2.10(b) as the filtered signal. The obtained
signal represents the grid hidden between two layers of the composite material.
The identification of this grid is of particular importance in civil engineering
applications [29].
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CHAPTER 3

Machine Learning

In the age of computing, where computers do tasks instantaneously, computers
need to have intelligence like humans. The human brain is a step ahead
regarding imagination, inspiration, and common sense [38]. The sophisticated
functionality of the brain, inspired the creation of artificial neural networks
(ANN). The ANN tries to simulate the brain’s neurons that process information
in parallel. Recent application breakthroughs have been using ANN, including
facial recognition system using PCA-ANN technique with feature fusion method
[32], application to Language Translation using Colour Segmentation and Neural
Network [2], application in the forecasting of time series [31].

3.1 Artificial Neural Networks

Neural Networks was first developed in the 1950’s [15] to try to make computers
able to interpret real-world issues in a way the human brain does. ANN consists
of an input layer of neurons, hidden layers of neurons(one or more), and the
output layer of neurons. Figure 3.1 shows an artificial neuron network (ANN)
where the lines connecting the neurons are associated with values called weights.
The output, ki, of neuron i in the hidden layer, is given by

ki = σ

(
N∑

i=1
Vijxj + Ti

)

Where σ is the activation function, Vij is the weights, xj is the input to the
input layer, N is the number of input neurons, and Ti is the threshold term for
the hidden neuron i. The purpose of the activation function is to introduce
nonlinearity and bound the neuron value, thus filtering out divergent neuron
i. Several examples of activation functions include the tangent, sigmoid and
hyperbolic tangent. The input is the independent variable, and the output is
the dependent.
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Figure 3.1: An example of Artificial Neural Network

Deep Learning is a class of Machine Learning techniques for learning in
neural networks. These techniques allow the computers to learn from experience
and understand through the hierarchy concept of acquiring knowledge. Deep
learning can be classified as supervised, unsupervised, or semi-supervised; it
depends on the aim of the neural networks [36].

Supervised learning predicts labelled output and input (the dataset is
labelled), such as object detection and image classification [47]. In unsupervised
learning, the dataset is unlabelled. Thus, the algorithm discovers autonomously
anomalies and hidden patterns [23]. The semi-supervised learning has a large
amount of unlabelled data with a small amount of labelled data with application,
for instance, in analyzing lung sound [8].

3.2 Convolution Neural Networks

Introduced by Yann LeCun, in the 1980s, and used by many applications today
from audio synthesis to image classification [7]. The advancement of computer
vision has experienced exponential growth, primarily over the CNN algorithm.
Convolution Neural Networks (CNNs), also known as ConvNet, are specialized
neural networks that use convolution in place of general multiplication in at
least one of the layers.

It involves taking input data and assigning importance (convolve) to various
objects in the data and being able to differentiate them from one another.
The data processed by CNNs have a grid-like structure such as 1D dimension
time-series data, which is interpreted as 1D dimension grid taking sample steps
at uniform time intervals. Also, the image data is a 2D dimension grid of pixels.

CNNs employ a mathematical operation called convolution. Consider a 1D
convolution with function f as the input and function g as the kernel for 1D
data such as time series. Then the output is given by
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S(t) = (f ∗ g) · (t) =
∫ ∞

−∞
f(τ)g(t − τ)dτ (3.1)

Where the asterisk * represents the convolution for CNNs, g needs to be a
valid probability density function for the output S(t) to be a weighted average.
In addition, g needs to be zero for all negative arguments to be compatible with
real-world examples. In CNNs f is the input function, g is the kernel and S(t)
is the output also known as the feature map. The CNN equation is given by

S(t) = (f ∗ g) · (t) =
∫ t

0
f(τ)g(t − τ)dτ (3.2)

In practice, measurement at every instant time is not realistic. On the
computer, time is discretized. Assuming t is discretized per second (or
millisecond), the discrete convolution can be defined as:

(f ∗ g) · (t) =
n∑
0

f(τ)g(t − τ)dτ (3.3)

In deep learning, multidimensional data are prevalent and the kernel is a
multidimensional array of parameters. Thus, convolution is used over more
than one axis at a time. For example, a 2D image with I as our input and K
as our 2D kernel, the convolution can be defined as:

S(i, j) = (I ∗ K)(i, j) =
∑
m

∑
n

I(m, n)K(i − m, j − n)

=
∑
m

∑
n

K(m, n)I(i − n, j − m)
(3.4)

By taking advantage of the commutative property of the convolution, we
can write the convolution in two ways: the first equation works by sliding the
image over the kernel, and the second equation works by sliding the kernel over
the image. The result is a scalar value. We repeat the process for every point
i, j for which the convolution can exist on the image. These values are stored
in a convolved matrix.

CNN has three fundamental features to help improve the machine learning
system: sparse iterations, parameter sharing, and equivariant representation
[45].

Sparse Iteration

CNNs typically have sparse interactions between layers. In typical feedforward
Neural Nets, every neuron in one layer is connected to every other in the next
layer. Thus, a large number of parameters leads to many parameter estimations
meaning a lot of training data will be needed. Convergence time increases due
to increased computation, and the model may be overfitted.

ConvNtes reduce the number of parameters through indirect interactions. It
is accomplished by making the kernel smaller than the input. Fewer parameters
are stored, which reduces memory needed for the model, computing output
requires fewer operations, and improves efficiency.
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Parameter sharing

CNNs have parameters that are used for more than function in a model.
Individual points in the same debt of the feature map (output) are created
from the same kernel. It drastically reduces the number of learned parameters
compared to typical Neural Networks. It does not affect the runtime for the
forward operation, but it reduces the storage requirements for the model’s
parameters.

Equivariant Representation

A function f is equivariant with another function g if

f(g(x)) = g(f(x)) (3.5)

Where x is the input, f and g can either be image translation or convolution
operation. Then convolution is equivariant with respect to translation.

CNN layers consist of convolution, activation, pooling, and Fully connec-
ted layers (FCN).

Convolution Layer

It is where we convolve the image or data, in general, using filters as our kernel.
Filters are small units we apply across the data through a sliding window. The
depth of the data and filter are equal. Thus high-level features such as edges
are extracted from the input. The convolution operation involves taking the
element-wise product of filters and images and then summing those values for
every sliding action to give a squashed convoluted feature output.

There are two types of results from the convolution operation. One, the
dimensionality of the convolved feature is increased (or remains the same as
the input), and second, the convolved feature’s dimensionality is reduced—the
former case results from applying the same padding, and the latter results from
using valid padding.

Activation Layer

Only nonlinear activation functions are used between subsequent convolution
layers because there won’t be any learning if we use linear activation. This
layer is also called the detector stage. Thus linear activation is passed through
a nonlinear function such as the rectified linear activation function.

Consider A1, A2 be two convolution filters applied on X, input, without
nonlinear activation between. Then

A1 ∗ (A2 ∗ x) = (A2 ∗ A1) ∗ x = A ∗ x (3.6)

Because of convolution’s associative property of convolution, the two layers
are as effective as one layer and just a single layer. This holds for typical
Artificial Neural Networks. Typically reLU function is used for activation
functions. ReLU is the abbreviation of rectified linear unit, the equation is
given by
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f(x) = x+ = max(0, x) (3.7)

Where x is the neuron. It removes negative values by setting them to zero.
Thus, non-linearity is introduced in the network. reLU is preferred over other
functions because it gives significant penalty to generization accuracy and it is
really fast because it does not activate all the neurons at the same time.

Pooling Layer

The pooling function modifies the output of the further layer by downsizing
the sampling features to learn fewer parameters during training, where max
pooling is the most common. It has two hyperparameters: the dimension of
spatial extent and stride.

Dimension of spatial extent is the value of n such that we can take n × n
feature representation and map it to a single value. The stride is how many
features the sliding window skips along width and height. Pooling reduces
the chances of overfitting as there are fewer parameters, memory size, and
computation time. Also, pooling helps make the representation robust by
contributing to local translation invariance.

Fully Connected Layer

The output from the convolution layers represents high-level features from the
data. Adding FCN before the output is a cheap way of learning nonlinear
combinations of these features. The output of a pooling layer: 3D feature map
needs to be converted to input for the FCN: 1D feature vector. The 3D feature
map is converted by flattening to a 1D vector.

In the classification, hidden layers are induced, and softmax activation is
applied to the last layer of neurons, producing the voting weights for classification
by predicting a multinomial distribution function.

Back Propagation

The features in convolution layers and voting weights in fully connected layers
come from back propagation. Deep Neural Networks does this on its own, no
manual setting. The concept involves

Error = right answer − actual answer (3.8)

The error is used to determine how much the network adjusts and changes.
The learning process is how error helps drive the gradient descent. Gradient
descent is a first-order iterative optimization algorithm for finding a local
minimum of a differentiable error function. The amount of adjustment is
determined by the size of the error. The adjustment is consistent for larger
errors; the adjustment is limited for smaller errors, and no adjustment is required
for zero error. The adjustment is made downhill the slope as shown in figure
3.2 where x is the weight and L(x) is the error.
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Figure 3.2: Gradient Descent

Doing this over many iterations helps all the weights settle to a minimum, the
point where the network performance has maximum capacity. Any adjustment
may induce the error to increase.

Hyperparameters

These are the knobs the network designer has to adjust manually. In the
convolution we have size and number of features. In pooling we have window
size and stride. In FCN we have number of neurons.

ConvNets are great in finding patterns and classifying images. Figure 3.3 1

shows a typical CNN architecture.

Figure 3.3: Artificial Neural Network

1Figure 3.3 source: https://uk.mathworks.com/videos/introduction-to-deep-learning-what-are-
convolutional-neural-networks--1489512765771.html
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3.3. Masked RCNN

3.3 Masked RCNN

Masked Region-based Convolution Neural Networks was introduced by Kaiming
He, a researcher at Facebook AI in 2015 [21]. It works to solve the problem of
instance segmentation in computer vision. Instance segmentation combines two
subproblems: object detection and semantic segmentation. Object detection
classifies individual objects and localizes each object instance using a bounding
box. Semantic segmentation classifies each pixel into a fixed set of categories
called a shaded mask without differentiating object instances. Since there are
two phases for semantic segmentation the Masked RCNN has two parts: the
object detection part that uses Faster-RCNN architecture and the semantic
segmentation part that uses architecture similar to FCN. RCNN is an approach
to bounding box object detection where Region of Interest (ROI) is created.
An improved version, Faster RCNN incorporates attention mechanism using a
region of proposed network (RPN) [27].

Object detection is performed in two stages. In Figure 3.4 2, the bounding
box is first determined using the RPN protocol to determine ROIs. Secondly,
class labels are determined for each object by ROI pooling.

Figure 3.4: Faster RCNN Framework

Faster RCNN was not designed for pixel-to-pixel alignment; thus,when
applying pooling on the ROI there is data loss. Pooling is used to downsample
a feature and introduce invariant to minor input distortions such as an image’s

2Figure 3.4 source:https://appliedsingularity.com/2021/06/08/object-detection-part-5-faster-r-cnn/
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rotation. Stride is the number of steps we move during pooling. For a stride to
be quantized, it means: Given an image of size 17 × 17, applying ROI pooling
to the new size of 7 × 7. The stride s is given by

s = 17
7 = 2.42

The stride ROI pool is rounded off to 2. Thus 14×14 top part will be considered,
the remaining part will be lost. Also, for a different size of images, such as
18 × 18. The stride s is given by

s = 18
7 = 2.57

Stride ROI pool is rounded off to 3, thus, leading to misalignment. To address
this problem, a simple, quantized-free layer called ROI-align is used to preserve
the spatial positions.

Thus Mask RCNN is similar to Faster RCNN; it additionally adds the output
of the object mask using pixel-to-pixel alignment. In semantic segmentation,
FCN is used to perform pixel-to-pixel multiclass categorization. It is used to
produce the mask from each ROI convolution to maintain spartial orientation,
which is crucial for a location-specific task.

In summary, instance segmentation involves object detection and semantic
segmentation. Mask RCNN is a meta-algorithm that achieves instance
segmentation by combining Faster RCNN and FCN. Mask RCNN has a special
feature of using ROI-align to preserve features’ spartial orientation with no
data loss. This is summarized in Figure 3.5. 3.

Figure 3.5: Mask RCNN Framework

3.4 Transfer Learning

Transfer learning is a machine learning problem that focuses on storing
knowledge gained while solving one problem and transferring it to a different
but related problem [46]. It is prevalent in computer vision tasks. Researchers
rarely train the deep learning model from scratch due to the limited amount of
dataset. Meaningful parameters from the trained models with large datasets

3Figure 3.5 source: https://www.researchgate.net/figure/Mask-R-CNN-framework-for-instance-
segment_fig2_334460507
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are extracted in transfer learning. Transfer learning involves two scenarios:
pre-training and fine-tuning.

The easiest way is to take the trained model, chop off its head layers and
replace it with a random initialized one. Then train the parameter in the top
layer of the task while other parameters remain fixed. The fixed parameters act
as feature extractors and the top layer act as the typical FCN layer as shown
in Figure 3.6 4.

Figure 3.6: Transfer Learning pre-training architecture

Transfer learning works best if the data and task of the pre-trained model
are similar to the data and task that needs training. In cases where there is
not much data to train on the target task, transfer learning might be the only
option to train a model without overfitting. Since having fewer parameters to
train reduces the risk of overfitting [6].

To improve performance and where there is more data, we can train the
whole network by unfreezing the fixed parameters. It is known as fine-tuning.
Here, the transfer is the initial value of the parameters. Initializing the weights
from the pre-trained model instead of initializing them randomly can give the
model an ahead start and speed up the convergence.

It is a common practice to start with frozen parameters and train only the
randomly initialized head layers until they converge. Then unfreeze the fixed

4Figure 3.6 source: https://neptune.ai/blog/transfer-learning-guide-examples-for-images-and-text-
in-keras
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parameters and fine-tune the whole network as shown in Figure 3.7 5

Figure 3.7: Transfer Learning fine-tuning architecture

In transfer learning, if the data and task are not so close to the one of the
pre-trained model, initializing the parameters using the pre-trained model is
still better than random initialization.

The attractive property that makes transfer learning work is when deep
learning networks are trained on large image data-sets, the early layer’s
parameters resemble each other regardless of the specific task the data-sets
have been trained on [40].For example, the MS COCO is a large-scale image
dataset containing 328,000 images of diverse objects. The data set was used to
train the Mask RCNN model to recognize, label, detect and segment objects.
Its weights are used in this project as initial parameter for transfer learning to
train our model [41].

5Figure 3.7 source: https://neptune.ai/blog/transfer-learning-guide-examples-for-images-and-text-
in-keras
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The Second Part
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CHAPTER 4

Numerical Applications

In this chapter, we demonstrate the performance of the FIF2 algorithm in
preprocessing real-world 2D data. The preprocessed data were further analyzed
through a deep learning technique called Mask RCNN in order to automatically
detect defects on the surface. Due to energy conservation principle, the average
temperature in the defect area is lower in the non-defect area since the defect
is passive, i.e. not producing energy.

In the project, a non-destructive testing (NDT) approach called IRT was
applied to detect material property without causing damage [34]. Since NDT
does not permanently change and modify any sample being inspected, it saves
on the cost and time needed for product inspection and research. Infrared
thermography, a type of NDT, is widely used in defect detection for various
materials.

4.1 Approaches in Infrared Thermography

Infrared thermography, also known as thermal imaging, is defined as imaging an
object by sensing the infrared (thermal) radiation emitted by it. The technique
maps temperature variations over the test object to detect both its surface, and
subsurface defects [34].

The temperature differentials on the surface or subsurface and the heat waves
produced can be used to detect defects in the object’s surface and subsurfaces.

Advantages of infrared are defects detected remotely from the acquisitions
of images. This is made possible applying the thermal principle to which the
object emits energy in the form of infrared radiation, which is not visible to the
naked eyes when the temperature is above T = −273.15◦C, that is, absolute
zero.

The temperature differentials, which can be detected without contact with
the object, and the naked eye is not able to detect, are of the order of one-
hundredth of a degree. This method requires the use of special cameras with
detectors sensitive to infrared radiation and a lens that transmits infrared
radiation. The infrared thermography camera lenses are made out of substances
like germanium with low absorption in the infrared spectrum. It is necessary to
use these specialized components instead of glass which is commonly used in
photographic cameras because it is transparent in the infrared spectrum and
has a high index of refraction. Glass is opaque in the infrared spectrum. Figure
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4.2. Infrared Thermography Classification

4.1 1 shows a typical infrared thermography system setup (active approach).

Figure 4.1: Active Thermography: Typical experimental setup

4.2 Infrared Thermography Classification

Infrared thermography can be classified as active or passive thermography.
Active thermography measures the surface temperature of objects that require
additional external thermal stimulation. Passive infrared thermography is a
technique for inspecting objects surface and subsurface by monitoring their
emitted thermal radiation without external stimulation. The objects are subject
to natural heating by solar radiation.

In this project, passive infrared thermography was used for defect detection.
The focus was on active defects which generate or absorb thermal energy, thus,
can be detected in passive infrared thermography. The defective areas in the
test object surrounding have different temperatures or abnormal hot spots as
compared to the surrounding.

Performance of passive approach needs the following parameters to be taken
into consideration such as the humidity of the surrounding, the temperature
of the surrounding, deployment of a living organism, for example, presence of
vegetation on the surface, condition of the surface, and so on [20].

In passive thermography, the infrared camera supplies the thermal images.
Each image has a value that corresponds to a particular temperature at a
given time. The image is converted into false colors for better recognition of
temperature contrasts. Usually, the blue color is utilized for the cold region
and the red color for warm regions.

Passive infrared testing can be used, for example, to inspect areas that
are difficult to access. Figure 4.2 2 demonstrates that passive thermography
was able to detect trapped water in composite cavities and also in aluminum
honeycombs in the air inlet of an Ilyushin-96 airplane one hour after landing.
[34].

1Figure 4.1 source: https://www.researchgate.net/figure/Typical-pulsed-thermography-system_fig4_
229040003

2Figure 4.2 source: [34] page: 659
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4.3. Data Acquisition

Figure 4.2: Passive IRT thermographic diagnostics of water ingress in the
honeycomb aluminum air inlet of an Ilyushin-96 airplane

4.3 Data Acquisition

In this section, thermal images were collected from the Basilica di Santa Maria
di Collemaggio wall. Basilica di Santa Maria di Collemaggio is a medieval
church in the city of L’Aquila, central Italy, founded 1287 [28]. It was damaged
during the earthquake of magnitude 6.2 Richter that stroke around central Italy
on April 6, 2009. Recently there was a temporary repair on one part of the
walls, as shown on the left image in Figure 4.3. Subsequently, the wall was
completely repaired. Thermal images were recorded at a stationary location
using the infrared camera at an interval of one minute per image for 500 minutes.
The right image in Figure 4.3 is an example of thermal image of the wall at the
10th minute. The primary reason for data collection is to detect a defect on
the subsurface, which may be a result of a detachment, water present in the
wall, and so on.

Figure 4.3: Basilica di Santa Maria di Collemaggio (left side)

The region of interest (ROI) for the study was the upper part of the wall,
excluding the windows and the horizontal metal bar, as shown in the left image
of Figure 4.4. The metal bar was primarily excluded because it produces high
amplitude and frequency waves that are not suitable for the FIF2 algorithm
producing false results. The right image in Figure 4.4 is the ROI of the thermal
image at the 10th minute which we want to preprocess. The ROI for each
thermal image was recorded.
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Figure 4.4: Thermal image recorded at the 10th minute

4.4 FIF2 application to Data preprocessing

In this thesis, FIF2 was deployed in preprocessing thermal images to minimize
the negative impact of temperature variations at the borders and the high-
frequency oscillations due to noise made by the camera, thus, providing clear
and precise thermal imprints to be segmented. FIF2 was used due to its fast
and unique algorithm that produced reliable results as shown in [29].

FIF2 was applied, with parameters being set at default and some manu-
ally adjusted. Delta, which is FIF2 stopping criterion, was set at 0.0001.
“ExTPoints” which is the number of extrema allowed at the remainder, was
set at 3. “ExtensionType”, which is the type of boundary extension, was set
at “asym” meaning antisymmetric padding (half point). “Xi”, which allows
to fine tune mask length was set at 1.6. “Alpha” used for the mask length
computation was set to “Almost min” which is a value close to 30-th percentile.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 4.5: IMFs of the thermal image minute 10th. Panels (a) to (i) show
IMFs from 1 to 9, respectively.

It took 20 min to decompose all 500 images on a Windows computer with
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Matlab version 2020b, and an Intel processor core i5 version 3. Figure 4.5
shows the IMFs produced except the trend line, where (a)-(i) represents 1st-9th
IMFs respectively. The IMFs had high frequency and small amplitudes, which
represented the noise.

The last IMF is considered as the clean Thermal image. Figure 4.6(a) shows
the 3D view of the last IMF. Figure 4.6(b) shows the 2D clean thermal image
at the 10th minute.

(a) (b)

Figure 4.6: The preprocessed thermal image of the 10th min

4.5 Binary Thresholding

There are many techniques for analyzing defects in thermal images. Among
them, binary thresholding is the simplest and easiest method, which binarizes
an image using a threshold value. It is used in many pre-processing steps in
image processing, such as extracting only pixels with a brightness value above a
certain level, separating the background from objects in an image, or simplifying
all the information in an image. In this thesis, automatic binary thresholding
using the Otsu algorithm is applied.

The Otsu algorithm automatically calculates the optimal threshold for
classifying images into two classes using a histogram based on a grayscale. To
classify the thermal image into two categories, an appropriate threshold value,
k, is applied such that pixels with grayscale values on one side of k will be
turned "on". In contrast, pixels with grayscale values on the other side will be
turned "off". It is beneficial for situations where the grayscale histogram of an
image has two peaks that correspond to the background and objects of interest.
Figure 4.7 shows the grayscale histogram of the thermal images.

Figure 4.7: Grayscale Histogram
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The histogram has small peaks starting around 0.3 and two significant peaks,
one between 0.5 and 0.6, the other peak very near 0.7. Thus, this image is
a good candidate for thresholding with Otsu’s method. The outcome is that
Otsu’s method finds a threshold value as k = 0.45 of the grayscale histogram.
Now we can create a binary mask with the comparison operator “>”. Pixels
above the threshold value are turned on, and those below the threshold are
turned off. Finally, we use the mask to select the foreground as shown in Figure
4.8.

Figure 4.8: Binary thresholding applied to thermal image recorded at 401th
minute

Contours are used to get and plot the external boundary found with binary
thresholding. A typical application of contour is to detect geometrical shapes
in images, which can help simplify problems involving classification or object
detection. Contours are rarely simple polygons depending on the quality, angle,
noise, and many other factors. Contours try to simplify the shape of the defect
rather than precisely follow the defect shape. The binary images we got from
the binary thresholding are used to find the contours of the defects. Next,
contours were drawn on the original thermal images as shown in Figure 4.9.

Figure 4.9: Application of Contours

4.6 Mask RCNN application to Data postprocessing

In this section, we will highlight the application Mask RCNN in automatic defect
detection and classification. Python was our choice programing language, and
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4.6. Mask RCNN application to Data postprocessing

because Mask RCNN is a technique for detection using a convolutional neural
network, we used the python Keras library and the TensorFlow framework used
for machine learning and artificial intelligence.

A dataset is a collection of data, which we divided into training, validation,
and testing datasets to automatically detect defects in a ratio of 8 : 1 : 1. The
images were standardized to be the same size of 1657 × 907 pixels, while a
training algorithm was used to detect the defects and classify them as either
considerable or minor. A minor defect means it does not reduce the usability
or stability of the wall and, therefore, can be ignored. Whereas, a considerable
defect means it may affect the stability or usability of the wall in the long run
and thus may need more check-ups.

Mask RCNN is an instance segmentation method extended from Faster
RCNN, which has a convolution backbone architecture. ROI Align preserves
the spatial orientation of features with no data loss for extraction over the
entire network image. This approach efficiently detects objects in an image
while generating a high-quality segmentation mask for each instance. Due to
predefined anchors, the speed of the model is slow.

Training

Training refers to teaching an algorithm toward a specific task for which it
will be applied. These algorithms also learn from experience without being
explicitly programmed. In our experiment, we labeled 500 images using the
VGG annotator, each with a varying number, classification, and size of defects
[16]. We trained our algorithm using four hundred images.

The training processing was conducted on a GeForce GTX1080TI, and it
took about 8 hours to train the network heads and then about 6 hours to
fine-tune the whole model by introducing all the network layers. The operating
system is set as windows 10. The framework of the learning model is set
as COCO-Model. CPU: i5-9018k. Memory: 16GB, GPU: NVIDIA GeForce
GTX1080TI. Figure 4.10 shows the summary of the training model.
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Figure 4.10: Summary of the detection model developed in this work

The transfer learning technique was applied first on the heads using weights
from the pre-trained COCO dataset model. The training detail of the Mask-
RCNN was set as follows: The weight decay is set to 0.0001, Network training
used Resnet101 as the backbone, The mini mask size is 512x512, and the
loss weight is equal for each class and mask (RPN class, RPN bounding box,
MRCNN class, MRCNN bounding box, and MRCNN mask), The learning
momentum is 0.9 and learning rate is 0.0002.

The training of the first five epochs of network heads was followed by the
training of all network layers for six epochs. Then training was done on the
whole network for six epochs to increase the robustness and accuracy of the
algorithm. The learning rate was modified by reducing it by a 10th, to avoid
overfitting.

4.7 Evaluation metric

Intersection over Union (IOU)

IOU is an evaluation metric (between 0 and 1) that measures the overlap
between the boundaries of the ground truth of annotation and the predicted
edge. IOU evaluates whether a prediction is “good enough” [39]. A prediction
is considered True Positive if IOU > threshold and False Positive if IOU <
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threshold. The closer the prediction is to 1, the closer it is to perfection. Figure
4.11 illustrates the graphical view of the equation below.

IOU = Area of Overlap
Area of Union (4.1)

Figure 4.11: Graphical View of the IoU equation

Mean Average Precision (mAP)

To understand mAP, we review precision and recall first. The recall is the
True Positive Rate; that is, of all the actual positives, how many are True
positives predictions. In the problem under investigation it means how the
system correctly recognized the defects over the cases that actually contained
them. Precision is the Positive prediction value; that is, of all the positive
predictions, how many are True positives predictions. In the case of defect
identification, precision means the ratio from the cases that contain the defects
over the cases that are recognized by the system that includes the defects, which
represents how accurate the system is in identifying the defects. F1 Score finds
the most optimal confidence score threshold, where precision and recall give
the highest F1 Score. The F1 Score calculates the balance between precision
and recall. If the F1 Score is high, precision and recall are high, and vice versa.

Precision = True Positive
True Positive + False Positive = True Positive

number of ground truths (4.2)

Recall = True Positive
True Positive + False Negative = True Positive

number of predictions (4.3)

F1 Score = 2 × (Precision × Recall)
Precision + Recall (4.4)

The precision and recall values are then plotted to get a PR (precision-recall)
curve. The area under the PR curve is called the Average Precision (AP). The
PR curve follows a kind of zig-zag pattern as recall increases absolutely, while
precision decreases overall with sporadic rises. The mAP is the averaged AP
over all the object categories. Thus it is used as a standard metric to analyze
the accuracy of an object detection model.
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4.8 Results

This model provided the shape and location of each defect detection result
based on the labeled images containing the ground truth. During each epoch,
the confidence metric improved over time, making detection closer to perfect.

The Mask RCNN showed some indistinguishable results from the ground
truth when the number of defects was less than three per image. Several shapes
and classes of defects are detected. Since the training database is composed
of irregular shapes, the testing results for thermal images with three defects
are not detected accurately. It indicates that the mask RCNN detection model
does not enhance detection performance based on instance segmentation of
pixel-to-pixel alignment.

The algorithm precision, Recall, and F-score analysis results are shown
below.

Precision = 0.71

Recall = 067

F1 Score = 0.69

mAP = 0.72

The confidence score threshold was set to 85% of the probability of detection
to distinguish True Positive, False Positive, True Negative, and False Negative
cases. This study aims to extract automatically, segment the features and classify
(i.e., defects) that could be found in each thermal frame. Each classification
may either be a major defect or a minor defect region in this task.

Figure 4.12 shows the classification of defects using the mask RCNN
algorithm. Mask (I), light blue in color, is the major defect with darkest
blue region indicating inspection is needed. Mask (II), red in color, is the minor
defect with dark blue but less darker than in mask(I) indicating immediate
defect inspection might not be warranted. They were detected at 91.57% and
90.89%, respectively. The presence of noise is the main factor affecting the
segmentation results. For checking (i.e., a double-check), the inspection may be
performed by a professional restorer or by using an additional NDT technique
(in contact or telemetric). The segmentation boundary still does not capture
the full defect size and shape. But it showed performance improvement in
defect detection capability on defects with regular shape, small size, and more
damage.
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Figure 4.12: Segmentation result from instance segmented Mask RCNN
algorithm

Therefore, it indicates that the detection performance for shape and
classification using mask RCNN has significantly improved.

4.9 Discussion and result analysis

To implement a robust detection model and effectively improve its accuracy, one
has to increase the size of the dataset. Also, the Data augmentation technique,
which involves rotation, horizon flipping, and vertical shifts, improves the
robustness of the model. It would also enhance the robustness of the algorithm
to train for the detection of large-size defects and improve the results of thermal
images.

Mask RCNN involves a pixel-based marking approach that could mark the
defects accurately, as opposed to marking a large area around each defect as
in binary thresholding. But due to the nature of thermal images being RGB
format, it misses creating an exact shape of the defect in the bounding box.

Therefore, building and creating more diverse and representative training
samples is crucial in future work in this research. A good defect characterization
is essential to avoid replacing parts that could be left and to avoid leaving
critically damaged components without the needed repair. Therefore, these
results are essential, especially in the designing of autonomous diagnosis NDT
systems, which can make decisions by themselves regarding the integrity of the
inspected part.

Future work in this research direction:

(i) improving by tuning the network parameters of the (Mask RCNN) for
instance segmentation.

(ii) since the CNN technique achieves excellent performance, other network
architectures should be tested and compared in the future to identify the
best tool for defect measurement with infrared images.

41



CHAPTER 5

Conclusion and Recommendation

5.1 Overview

In this work a pre-processing technique based on FIF and deep learning
algorithm mask RCNN ware applied for automatic defect detection in infrared
thermography. The FIF decomposition method handles nonstationary signals
better than Fourier and wavelet transform. Chapter 2 introduces a short theory
review, and examples of application of the FIF algorithm. Based on the results
and analysis reported in Chapter 4, FIF performs well in cleaning the thermal
images. Thus, it improves defect detection. Due to the need for defect detection
in infrared thermography, deep learning tools are used. Mask RCNN algorithm
was applied due to its ability to Instance segment the defects. Mask RCNN was
introduced in Chapter 3 and its results are reported in Chapter 4. Overall, the
proposed approaches appear to be promising to improve defect detection and
automation of the process.

5.2 Limitations of Work

The FIF decomposition method also has a drawback: the “end effects” at the
boundaries. This drawback affects any signal decomposition methods which
deal with compactly supported signals resulting in the loss of information
at and nearby the edges of the dataset during the decomposition of signals.
To increase the decomposition method accuracy, extending signals across the
boundaries is essential. However, currently there are just a limited number
of extension approaches available in the literature. The generalization of the
extension techniques may lead to a significant improvement in reducing the
boundary effects. The manual selection of the IMFs to be chosen from the
FIF decompositon is another limitation. Automating this process and other
parameters selection will save time and optimize the algorithm performance.

In this work, the Mask RCNN algorithm was applied to the older Tensorflow
framework making the process slow. It becames difficult in this way to use
multiple modifications, such as increasing layers and modifying activation
functions.
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5.3 Future Work and Recommendation

Future work will focus on automating the FIF algorithm and to improve and
fasten the pre-processing of the thermal images. In addition, automatic defect
detection of more complicated structured materials through the optimization
and combination of different deep learning models should be studied. Deep
learning tools will be applied using up-to-date frameworks, and more data will
be collected and analyzed to improve the proposed models.
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